

Project overview

Stefan Simis (PML)

www.monocle-h2020.eu / @monocle_h2020 / monocle@pml.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776480

MONOCLE Consortium

MONOCLE objectives

Improved in situ components to support Earth Observation of optically complex waters

- Connected high-end and low-cost sensors
- Innovative deployment strategies
- Focus on reflectance + atmospheric transmissivity

Cost-effectiveness of in situ observation services

- Develop low-end sensors for gap-filling (time, space)
- Support existing sensors
- Review calibration and quality assurance strategies

Sustainable networks and services

- Support data exchange and downstream usage
- Transparent sharing and licencing
- Training and capacity building materials

MONOCLE objectives

Multi-scale observations

Remote Sensors

High coverage, low frequency, low-cost in-situ sensing network (ad-hoc or campaigns)

R&D requirement:
Data quality assurance and statistical methods to integrate low-cost and reference measurements

High accuracy & frequency in-situ sensor network

MONOCLE objectives

Self-calibrating network concept

Sensor and Platform innovations

Hyperspectral water-leaving reflectance

- Validation of sensor and atmospheric correction system
- **Hyperspectral** data: simulate any satellite sensor

Innovations:

Water Insiah

- Modular system for handheld and automated use
- Integration on buoys, ships, offshore platforms

Sensor & Platform innovations

Direct/diffuse irradiance for water + atmosphere

- Direct solar radiance and diffuse (scattered) radiance
- Derive atmospheric absorption properties and model the underwater light field by measuring direct and diffuse field
- Robotic Sunphotometers are available. The HSP1 uses a novel optical head at ~25% of the cost.

Innovation:

- Hyperspectral
- Prototype ready

CIMEL Sunphotometer

HSP1 Hyperspectral Pyranometer

Peak Design

Sensor & Platform innovation

Airborne cameras

Low-medium cost (€100 - €1 000) Small drone + Integrated RGB camera

Medium-high cost (€1k - €20k) Larger drone + Multispectral camera and irradiance sensor

Prohibitive cost (> €20k) Hyperspectral imaging camera

380-1000 nm

Tested applications:

Sediment concentrations

Sediment concentrations Chlorophyll-a

Sediment concentrations Chlorophyll-a Phytoplankton functional types?

Sensor & Platform innovation

Handheld spectropolarimetry: iSPEX

iSPEX < 10 €

More on linking Earth Observation and Citizen Science: 2nd MONOCLE Webinar – 11 June 2018

See www.monocle-h2020.eu/webinars

Complementing satellite imagery

Light attenuation coefficient

Vertical attenuation is scarcely measured in situ:

- Access to optically deep water required
- Specialist equipment required

Alternatively, low-cost buoys are developed which may double as indicators of stratification

Network innovation

Interoperability, licensing, and real-time sharing

Webinar on sustainability of monitoring networks: **24 October 2018** See www.monocle-h2020.eu/webinars for updates

MONOCLE

Opportunities and challenges (for discussion)

MONOCLE focusses on developing sensor, deployment and data processing solutions while supporting collaboration with:

- site operators (network compatibility)
- sensor manufacturers (data interface development)
- citizen science initiatives (**test new sensors**)

Improved **data accessibility** through connected sensors supports anomaly detection, response times, sensor auditing, live visualization, and supports satellite observation: everyone wins but only some profit.

Who compensates site operators? New paradigm on data licensing and sharing needed. Move towards hybrid EO - in situ observation services.

