

# Spaceborne Observations to Nourish the GEMS/Water Global Network

Daniel Odermatt<sup>1</sup>, Philipp Saile<sup>2</sup>, Dima Lisniak<sup>2</sup>, Kerstin Stelzer<sup>3</sup>, Carsten Brockmann<sup>3</sup>, Petra Philipson<sup>4</sup>, Benjamin Koetz<sup>5</sup>

ater











### **Project Overview**

- 2-year ESA DUE Innovators III project
- Aims to demonstrate how Sentinel-2 and other current sensors can contribute water quality information for UNEP's GEMS/ Water programme



EO Service Requirements • In Situ Measurement Requirements • In Situ Measurements • EO Products





#### Earth Observation Services





EO Service Requirements • In Situ Measurement Requirements • In Situ Measurements EO Products •

Sweden AB

eesa



#### National Focal Points



- Monitoring sites
- Description of local WQ issues
- Cyanobacteria identification
- Improved monitoring efficiency
- Adoption of EO techniques





### Test Site Examples: Guatemala

#### Lake Atitlan – GEMStat site

- Mesotrophic lake
- Drinking water source under increasing agricultural press.
- 6 field campaigns, 3 sites
- CHL, TSM, Secchi, Turbidity
- 14.1 valid Landsat-8 obs/a
- 22.6 valid Sentinel-2 obs/a
- 1.8 valid simultaneous obs/a

Quezaltenar

Retalhuleu

Gua

Escuintla

Coatepeque

Puerto Cortes

speranz

Rio Bravo

**STATE OF THE LAKE** 

Unidos por el Lago Atitlán

www.unidosporlagoatitlan.org

USAIC

Universidad Rafael Landívar Santa Cruz de Vojoa Na Victoria

Siguatepeque

Comayagua

Tegu

#### Rio Bravo Conservation 10 Parque Test Site Examples: Guatemala San Ignacio Parque Nacional Benque Viejo Del Carmen Sierra Del Dangriga CA11 Hopkins Lake Izabal Flores an Cristob las Casas Mesotrophic lake El Chal Seine Bight Sayaxché Dolores 2 RAMSAR sites in catchment Placencia Machaquilá • 0-1 field campaigns Poptún CA13 Punta Gorda • CHL, TSM, Secchi, Turbidity cordiac Fray • 10.4 valid Landsat-8 obs/a Chisec Puerto Cortés ivingston Casas Tela • 16.6 valid Sentinel-2 obs/a Puerto Barrios CA13 San Pedro Sula No simultaneous obs Cobán Morales El Progreso luehuetenango C.1.4 capetahua Salama apachula de Cordova Zacapa Encrucijada anta Barbara Ordonez CATT Quezaltenango CA Chiguimula an Ruinas Coatepeque Guatemala Jalapa Siguatepeque CA10 Mazatenando Comayagua Antiqua Retalhuleu Guatem Paz Escuintla a Esperanza CA5 CABE Jutiapa Tegu CAB anta Ana Monterrico

San Salvador

EO Service Requirements • In Situ Measurement Requirements • In Situ Measurements • EO Products



### Lake Pyhäjärvi Acquisition Calendar

L-8 & S-2

| L-8 (189) | L-8 (190) |
|-----------|-----------|
|           |           |
| S-2 (122) | S-2 (079) |

### S-2 (022)

L-8 (191)

| Apr 16 |    |    |    |    |    |    |  |  |
|--------|----|----|----|----|----|----|--|--|
| Mo     | Tu | We | Th | Fr | Sa | So |  |  |
|        |    |    |    | 01 | 02 | 03 |  |  |
| 04     | 05 | 06 | 07 | 08 | 09 | 10 |  |  |
| 11     | 12 | 13 | 14 | 15 | 16 | 17 |  |  |
| 18     | 19 | 20 | 21 | 22 | 23 | 24 |  |  |
| 25     | 26 | 27 | 28 | 29 | 30 |    |  |  |
|        |    |    |    |    |    |    |  |  |

| May 16 |    |                |    |    |    |    |  |  |  |
|--------|----|----------------|----|----|----|----|--|--|--|
| Mo     | Tu | Tu We Th Fr Sa |    |    |    |    |  |  |  |
|        |    |                |    |    |    | 01 |  |  |  |
| 02     | 03 | 04             | 05 | 06 | 07 | 08 |  |  |  |
| 09     | 10 | 11             | 12 | 13 | 14 | 15 |  |  |  |
| 16     | 17 | 18             | 19 | 20 | 21 | 22 |  |  |  |
| 23     | 24 | 25             | 26 | 27 | 28 | 29 |  |  |  |
| 30     | 31 |                |    |    |    |    |  |  |  |

| Jun 16 |    |    |    |    |    |    |  |  |  |
|--------|----|----|----|----|----|----|--|--|--|
| Mo     | Tu | Sa | So |    |    |    |  |  |  |
|        |    | 01 | 02 | 03 | 04 | 05 |  |  |  |
| 06     | 07 | 08 | 09 | 10 | 11 | 12 |  |  |  |
| 13     | 14 | 15 | 16 | 17 | 18 | 19 |  |  |  |
| 20     | 21 | 22 | 23 | 24 | 25 | 26 |  |  |  |
| 27     | 28 | 29 | 30 |    |    |    |  |  |  |
|        |    |    |    |    |    |    |  |  |  |

| Jul 16               |    |    |    |    |    |    |  |  |
|----------------------|----|----|----|----|----|----|--|--|
| Mo Tu We Th Fr Sa So |    |    |    |    |    |    |  |  |
|                      |    |    |    | 01 | 02 | 03 |  |  |
| 04                   | 05 | 06 | 07 | 08 | 09 | 10 |  |  |
| 11                   | 12 | 13 | 14 | 15 | 16 | 17 |  |  |
| 18                   | 19 | 20 | 21 | 22 | 23 | 24 |  |  |
| 25                   | 26 | 27 | 28 | 29 | 30 | 31 |  |  |
|                      |    |    |    |    |    |    |  |  |

Water

BROCKMANN CONSULT

bfg

Odermatt & Brockmann

| Aug 16 |    |    |    |    |    |    |  |  |  |
|--------|----|----|----|----|----|----|--|--|--|
| Mo     | Tu | We | Th | Fr | Sa | So |  |  |  |
| 01     | 02 | 03 | 04 | 05 | 06 | 07 |  |  |  |
| 08     | 09 | 10 | 11 | 12 | 13 | 14 |  |  |  |
| 15     | 16 | 17 | 18 | 19 | 20 | 21 |  |  |  |
| 22     | 23 | 24 | 25 | 26 | 27 | 28 |  |  |  |
| 29     | 30 | 31 |    |    |    |    |  |  |  |
|        |    |    |    |    |    |    |  |  |  |

| Sep 16 |    |    |    |    |    |    |  |  |  |
|--------|----|----|----|----|----|----|--|--|--|
| Mo     | Tu | We | Th | Fr | Sa | So |  |  |  |
|        |    |    | 01 | 02 | 03 | 04 |  |  |  |
| 05     | 06 | 07 | 08 | 09 | 10 | 11 |  |  |  |
| 12     | 13 | 14 | 15 | 16 | 17 | 18 |  |  |  |
| 19     | 20 | 21 | 22 | 23 | 24 | 25 |  |  |  |
| 26     | 27 | 28 | 29 | 30 |    |    |  |  |  |
|        |    |    |    |    |    |    |  |  |  |



### **Overview of Planned In Situ Measurements**

| Country   | Water body<br>name | Type | CHL   | TSS | CDOM  | Turbidity/<br>Secchi Depth | Derived<br>Nutrients<br>(CHL) | Derived DOC<br>(CDOM) |
|-----------|--------------------|------|-------|-----|-------|----------------------------|-------------------------------|-----------------------|
|           | Lamposaarenselkä   | L    | 4     |     | 4     | cit.                       |                               |                       |
|           | Lammin Pääjärvi    | L    | 5     |     | 5     | 5                          |                               |                       |
| Finland   | Puruvesi           | L    | 2     |     | 2     | 2                          |                               |                       |
|           | Säkylän Pyhäjärvi  | L    | auto. |     | 6     | auto.                      |                               |                       |
|           | Vanajanselkä       | L    | auto. |     | auto. | auto.                      | auto.                         | auto.                 |
|           | Volta              | R    | 12    | 12  |       | 12                         |                               | 12                    |
| _         | Weija              | R    | 12    | 12  |       | 12                         |                               | 12                    |
| Ghana     | Bosomtwe           | R    |       |     |       |                            |                               |                       |
|           | Barekese           | L    |       |     |       |                            |                               |                       |
|           | Pra                | Ι    |       |     |       |                            |                               |                       |
|           | Atitlan            | L    | 12    | 12  |       | 12                         |                               |                       |
|           | Amatitlan          | L    | 20    | 20  |       | 20                         |                               |                       |
| Guatemala | Ayarza             | L    |       |     |       |                            |                               |                       |
|           | Peten Itza         | L    |       |     |       |                            |                               |                       |
|           | Izabal             | L    |       |     |       |                            |                               |                       |
| Japan     | Kasumigaura        | L    | 120   | 120 |       | 120                        | 120                           | 60                    |
|           | Kagera             | Ι    | 12    | 12  |       | 12                         |                               | 12                    |
|           | Tanganyika         | L    | 12    | 12  |       | 12                         |                               | 12                    |
| Tanzania  | Victoria           | L    | 12    | 12  |       | 12                         |                               | 12                    |
|           | Malagarasi         | Ι    | 12    | 12  |       | 12                         |                               | 12                    |
|           | Ruvu               | Ι    | 12    | 12  |       | 12                         |                               | 12                    |







cesa

Water



EO Service Requirements • In Situ Measurement Requirements • In Situ Measurements • EO Products



### **Product Validation Approaches**



#### Histogram and Data Range Statistics

BROCKMAN CONSULT

bfg

Wate



sponge

eesa

### Lake Kasumigaura: Acolite $R_{RS}$

Data of January 13, 2016; in situ measurements by Bunkei Matsushita, Univ. Tsukuba





Data of January 13, 2016; in situ measurements by Bunkei Matsushita, Univ. Tsukuba



EO Service Requirements • In Situ Measurement Requirements • In Situ Measurements • EO Products





### Data Access and Processing



#### Calvalus Infrastructure (HW & SW) 90 nodes (380 cores), 1.33 PB online storage, 2 master, 2 archive nodes





### Number of S-2 Products per Lake (April 2016)



bfg

max = 40min = 3 mean = 15.1 median = 12.5 modus = 6



### Algorithm Review

| Task                      | Name                | Chapter | S-2          | L-8                  | Reference                    |
|---------------------------|---------------------|---------|--------------|----------------------|------------------------------|
|                           | L-8 internal        | 3.1     | Unavailable  | L1T                  | USGS (2015)                  |
| Pixel<br>Masking          | S-2 internal        | 3.2     | L1C          | Unavailable          | ESA (2015)                   |
|                           | Fmask               | 3.3     | Python       | Matlab, Python       | Zhu et al. (2015)            |
|                           | Modified LTK        | 3.4     | Unavailable  | Python               | Wilson and Oreopoulos (2013) |
|                           | Idepix              | 3.5     | In work      | SNAP                 | Danne (2016)                 |
|                           | Sen2Cor             | 4.1     | Python       | Unavailable          | Müller-Wilm (2015)           |
| Atmospheric<br>correction | ACOLITE             | 4.2     | In work      | IDL                  | Vanhellemont et al. (2014)   |
|                           | OPERA               | 4.3     | In work      | In work              | Sterckx et al. (2015a)       |
|                           | MEETC2              | 4.4     | Unavailable  | Unavailable          | Saulquin et al. (2016)       |
|                           | MCI [CHL]           | 5.1     | SNAP         | Unavailable          | Gower et al. (2006)          |
|                           | NDCI [CHL]          | 5.2     | SNAP         | Unavailable          | Mishra and Mishra (2012)     |
|                           | OC3 [CHL]           | 5.3     | SNAP/ACOLITE | SeaDAS/ SNAP/ACOLITE | Franz et al. (2015)          |
| Constituent<br>retrieval  | TSM-NIR [TSM]       | 5.4     | SNAP/ACOLITE | SNAP/ACOLITE         | Nechad et al. (2010)         |
|                           | Tur-NIR [Turbitity] | 5.5     | SNAP/ACOLITE | SNAP/ACOLITE         | Nechad et al. (2009)         |
|                           | QAA [Secchi depth]  | 5.6     | Unavailable  | Unavailable          | Lee et al. (2016)            |
|                           | CDOM-vis [CDOM]     | 5.7     | SNAP         | SNAP                 | Kutser et al. (2005)         |
| Coupled                   | C2R                 | 6.1     | In work      | BEAM                 | Doerffer et al. (2012)       |

Table 1: List of algorithms that are or will be freely available in the near future for both sensors considered in SPONGE.





bfg=



### Planned Sentinel-2 Processing Chain



#### Goals:

bfg

• To provide a basic set of WQ parameters using only TOA radiance

BROCKMAN

- To facilitate generic processing and data exchange procedures
- To calibrate MCI for prioritized sites

Water

#### Goals:

eesa

- To obtain accurate waterleaving reflectances for the whole vis-NIR spectrum and all sites
- To obtain all available WQ parameters

#### Goals:

- To improve water pixel identification (Idepix)
- To improve WQ parameter retrieval (C2R)



## Summary of Opportunities

- GEMS/Water's NFPs are a global network of potential users
- The NFPs (will) understand that remote sensing could complement discontinuous monitoring programmes (e.g. based on foreign aid)
- GEMStat allows for a variety of standardized methods, which is a good model for the selection of remote sensing algorithms
- SPONGE provides GEMS requirements and the corresponding blueprint for easily adoptable technologies, work procedures and interfaces





### Summary of Challenges

- Cal/val is strongly limited by the NFPs work practices and resources
- S-2 is relatively new for use in a service framework, still limited in regional availability and data properties may change
- Due to the above, the SPONGE service concept may not work equally well for all regions, and only few of them may make the cut to GEMStat
- The value of the service in sites without reference data is highly uncertain



