INFORM overview

Ils REUSEN, VITO (ils.reusen@vito.be)

VITO in numbers

- 750 employees
- 26 nationalities

More than 400 patents worldwide

HR EXCELLENCE IN RESEARCH

- HQ in Mol, Belgium. Offices in Ostend, Berchem, Ghent, Genk Subsidiary in China

200 scientific articles in 2014


1000 research projects

140 mio € turnover in 2014

More than 500 research partners

VITO Remote Sensing

Improved monitoring and forecasting of ecological status of European INland waters by combining Future earth ObseRvation data and Models

EU FP7-SPACE project INFORM

- Collaborative project THEME [SPA.2013.1.1-07] [Remote sensing methods]
- Start date: 1/1/2014
- Duration: 48 months
- 9 beneficiaries from 7 EU Member States
- Requested EU contribution: € 1 991 902. 97
- Grant agreement n° 606865

INFORM partners

	Participant organisation name	Participant short name	Country					
VITO Vision on technology	VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK N.V.	VITO - Coordinator	BELGIUM					
Intelligible per li recommento indefense participatione	CONSIGLIO NAZIONALE DELLE RICERCHE	CNR	ITALY					
EOMV5	EOMAP GmbH & Co.KG	EOMAP	GERMANY					
UNIVERSITY OF STIRLING	THE UNIVERSITY OF STIRLING	U STIRLING	UK					
Conditional Detectional National Conditional Conditional National Conditional National Conditional I DD National I	INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE	RBINS	BELGIUM					
Deltares Eventy Driv or	STICHTING DELTARES	Deltares	THE NETHERLANDS					
PML Plymouth Marine Laboratory	PLYMOUTH MARINE LABORATORY	PML	UK					
MTA ÖKOLÓGIAI KUTATÖKÖZPONT Cantro for Ecological Research	MAGYAR TUDOMANYOS AKADEMIA OKOLOGIAI KUTATOKOZPONT	MTA OK	HUNGARY					
	KLAIPEDOS UNIVERSITETAS	KLAIPEDOS UNIVERSITETAS	LITHUANIA					
GEO AquaWatch Meeting								

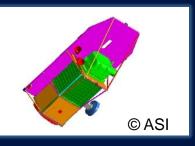
GEO Aquawatch Meetin

June 8-10 2016

Koblenz, Germany

Main objectives

- To <u>develop and demonstrate</u> new and improved userdriven <u>products for inland water quality</u> monitoring and forecasting by combining water quality models and EO data which fully exploits the improved spectral, spatial and temporal capabilities of new and upcoming EO missions like Sentinel-2, Sentinel-3 and hyperspectral EO missions like EnMAP and PRISMA.
- To provide recommendations for future EO missions taking into account requirements for inland water quality monitoring.



Update on satellite missions

- Sentinel-2 (launched 23 June 2015 images available)
- Sentinel-3 (launched 16 February 2016; in commissioning phase)
- EnMAP (2017-2018?)
- PRISMA (2017-2018?)

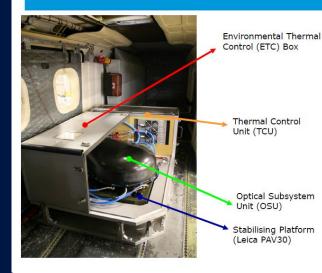
GEO AquaWatch Meeting June 8-10 2016 Koblenz, Germany

© EnMAP

Sentinel-2

- Sentinel-2A launched: June 2015
- Global revisit time: 5 days with 2 satellites
- MSI (Multi Spectral Instrument)
 - 13 spectral bands: 443 nm
 – 2190 nm (including 3 bands for atmospheric corrections)
 - Spectral resolution: 15 nm- 180 nm
 - Spatial resolution: 10 m, 20 m and 60 m
 - Swath: 290 km

Sentinel-3



- Sentinel-3A launched Feb 2016
- 2 day global coverage
- OLCI (Ocean and Land Colour Instrument)
 - Swath width: 1270 km, with 5 tilted cameras
 - Spatial sampling: 300 m (full resolution mode)
 - Spectral range: 21 bands [0.4-1.02] μm

APEX system overview

Cesa

APEX airborne hyperspectral imaging sensor for

- Simulation
- Calibration
- Validation

of satellite sensors/products

Parameter	Value
Field of View (FOV) - pushbroom technique	Swath: ± 14deg with 1000 across-track pixel
Instantaneous Field of View (IFOV)	0.028 deg
Flight altitude range	3,500 - 10,000 m.a.s.1.
Standard aircraft interface	for Dornier Do-228 on stabilizing platform PAV-30
Spectral range	VNIR: 380 – 1000 nm, SWIR: 940 – 2500 nm
Spectral channels	VNIR: 312 (prior binning), SWIR: 199
Spectral sampling interval	380 - 1050 nm: < 5 nm, 1050 - 2500 nm: < 10 nm
Center wavelength accuracy	< 0.2 nm
PSF (Point Spread Function)	≤ 1.75 Sampling interval
Spectral / Spatial Misregistration	< 0.1 pixel
Polarization sensitivity	Less 0.03 in VNIR, Less 0.05 in SWIR (goal)
Spatial co-registration between VNIR and SWIR channel	Goal: 0.16 pixel
Instrument temporal radiometric uncertainty within a flight section	Better 0.02
Interval for instrument re-calibration	After a complete flight season
Radiometric performance accuracy	Instrument shall allow absolute calibration accuracy up to 0.03 (goal)

http://www.apex-esa.org

End-user needs (WFD, Dredging industry)

S2, S3, EnMAP, PRISMA with improved spectral, spatial and temporal capabilities

OUTLOOK: Inland Water Quality services Recommendations for future EO missions for Inland Water Quality monitoring

GEO AquaWatch Meeting June 8-10 2016 Koblenz, Germany

F

European approach

- WP1 Management (VITO)
 - Legal management
 - Financial management
 - Administrative management
- WP2 Scientific coordination (VITO)
 - Scientific coordination of the project
- WP3 End-user interaction (CNR)
 - To explore the end-user requirements in terms of water quality products
 - To stimulate project results' uptake by the end-users and industry
- WP4 Data gathering (VITO)
 - To inventory existing data, identify data gaps
 - To acquire new (in-situ, APEX hyperspectral and satellite) data
 - Development Campaign 2014
 - Testing Campaign 2016

- WP5 Algorithm development and validation (U STIRLING) •
 - Development and validation of EO products, and estimation of their ____ uncertainty for WP6
 - Atmospheric correction (RBINS)
 - Attenuation and euphotic depth (RBINS) •
 - TSM and turbidity (VITO) •
 - Yellow matter (PML)
 - Phytoplankton functional types (CNR)
 - Stratification (EOMAP)
 - Macrophytes (CNR) •
 - Phytoplankton primary production (U STIRLING) •
 - Sun-induced chlorophyll fluorescence (U STIRLING)

June 8-10 2016

Koblenz, Germany

GEO AquaWatch Meeting

Status: see product flyers at http://www.copernicusinform.eu/content/downloads ATBD (June 2016)

DATA

villa.p@irea.cnr.it

METHODOLOGY

calibrated

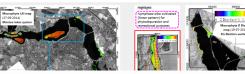
t-based surveys in Kis-Balaton wetland (16-18 July 2014) Macrophyte cappoy biophysical parameters modelling Mantua lakes system (26 June and 23 September 2014) for by biophysical parameters estimation: · based on semi-empirical regression, exploiting spectra vegetation indices sensitive to vegetation structure and density:

19 macrophyte beds of submerged, floating and e nacrophyte spectral reflectance sa

macrophyte fractional cover, LAI and above water PEX images acquired over Kis-Balaton wetland (19 July 2014)

nd Mantua lakes system (27 September 2014)

biomass data collected in situ (and processed in lab (dried mapping products (LAI and Dry biomass) are: in oven at 70° C for 24 h) LAI (m² m⁻²) = 0.56(MTCI)+0.27 ctral reflectance data derived from airborne hype

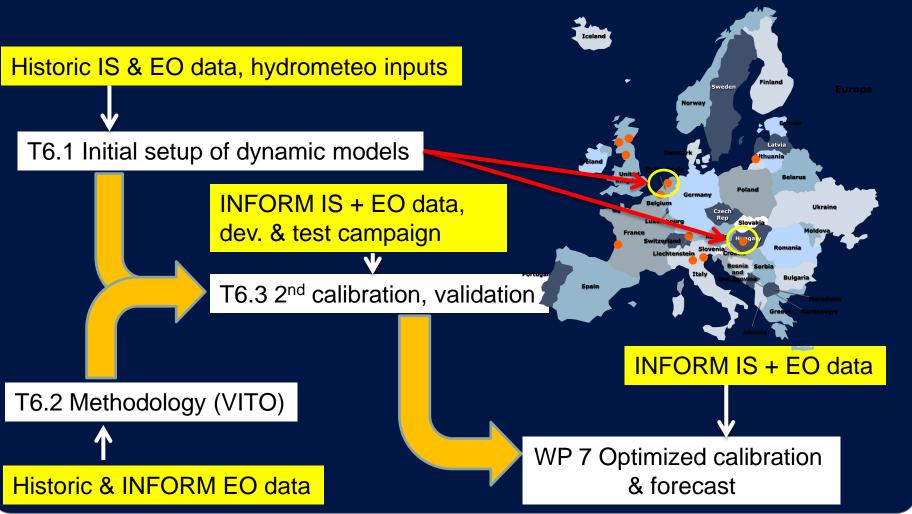

D Biom (kg m⁻²) = 0.17(MTCI)+0.03 MTCI = $\frac{\rho 754 - \rho 709}{\rho 709 + \rho 681}$ (Dash & Curran, 2004)

deriving macrophyte

PRODUCTS - Macrophyte LAI and Dry Biomass maps for Mantua and Kis-Balaton site

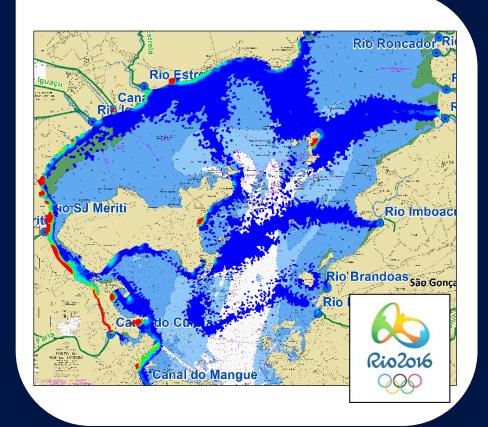
spectral vegetation index scoring the highest B canopy parameter measured in situ was used fo

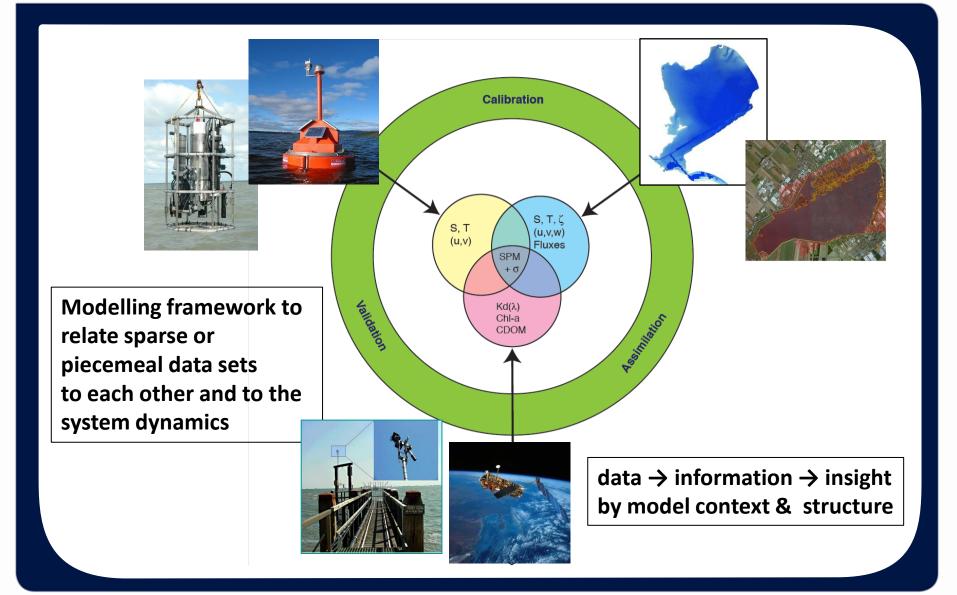
estimation through linear regression.



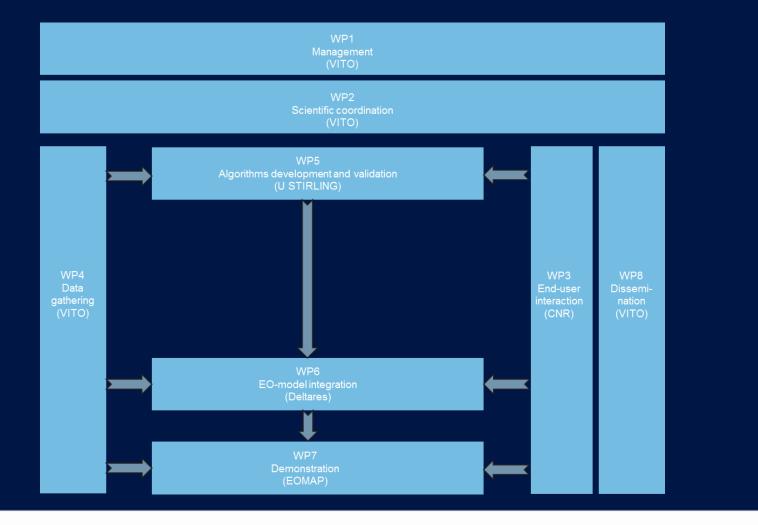
- WP6 EO-model integration (Deltares)
 - Integration of Earth Observation (EO) & In-Situ (IS) data and Water Quality (WQ) modelling

Workflow




Why model?

- Interpolation & reconstruction in time & space, historic trends, unobserved variables, fluxes
- Scenario studies, impact assessments
- Forecasting (NRT) of algal blooms, resuspension events & spills



- WP7 Demonstration (EOMAP)
 - To demonstrate to end-users
 - the INFORM prototype algorithms applied to new satellite sensors and
 - the added value of INFORM EO products for WQ model validation and forecasting
 - To test the compliance of INFORM EO products with end-user requirements
- WP8 Dissemination (VITO)
 - To disseminate the project objectives, progress and results
 - To raise the awareness of the INFORM project
 - To give <u>recommendations for future satellite missions</u>
 - To organise a <u>results uptake workshop</u>

Interdependency of Work Packages

				R	P′	1		RP2					RP3													
		M1			M7			M13			M1	9		M2	25		M31		M3	37		M4	3			
VP 1	Management (MGT)																									
VP 2	Scientific coordination (RTD)	•						•						٠					•						٠	
VP 3	End-user interaction (RTD)																									
Task 31	End-user requirements		+•											•	•											
Task 32	Preparation of results uptake																							•		
VP 4	Data gathering (RTD)																									
Task 41	Existing data and data gaps																									
Task 42	Data acquisition development campaign						•																			
Task 43	Data acquisition testing campaign																		•							
	Algorithms development and validation (RTD)													•												
	Atmospheric correction																									
	Attenuation and euphotic depth																									
	TSM and turbidity																									
	Yellow matter																									
	Phytoplankton functional types																									
	Stratification																					_				
	Macrophytes																					_				
	Phytoplankton primary production										_															
	Sun-induced chlorofyll fluorescence																					\rightarrow	_			
	EO-model integration (RTD)		_														•	•				_				
	WQ modelling				_									•	•				_			_				
	EO as WQ model input				_									_												
	Integration EO&IS and WQ modelling																									
	Demonstration (DEM)		_																							
	INFORM algorithms application	_												_					_							
	Quality information of INFORM satellite products	\square																			•					
	INFORM products as input and validation for models	\square																								
	Model application and WQ forecasting	\square																						•		
	Dissemination (OTHER)																									
	INFORM website																									
	Conferences and meetings																									
Task 83						_	_																			
	Recommendations for future missions	\square																				\rightarrow		٠		
Task 85	Results uptake workshop																								٠	-
																		Mo	nt	h	30		ļį.	in	<u>)</u>	2()
/ilestones																									- '	
Neetings	◆	scie enc	entific d-usei	: advi: r advi	sory b	oard oard	meeti meeti	ngs S ings E	SABO EUAE)1 (Mc 301 (N	onth ' Nonth	1), SA 1 3), E	AB02 EUAB	(Mont 02 (N	th 25) Íonth		4 (Mont UAB03			(Moi	nth 48)					
								,							,							++				-

GEO AquaWatch Meeting

June 8-10 2016

Koblenz, Germany

INFORM website http://www.copernicus-inform.eu

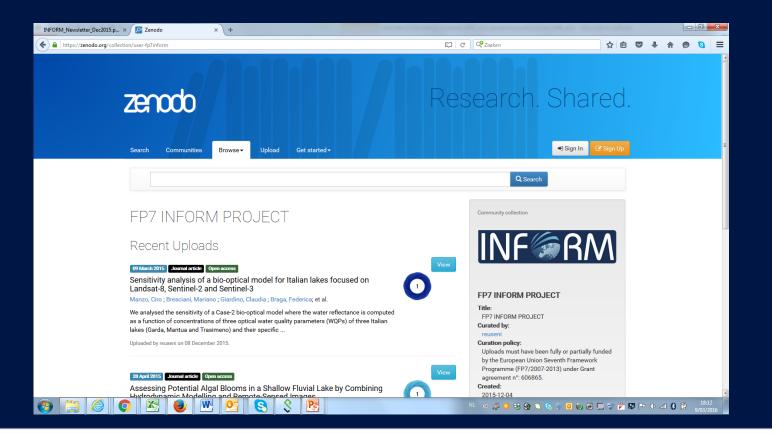
GEO AquaWatch Meeting June 8-10 2016

Koblenz, Germany

Papers

- >> Hestir E. L., Brando V. E., Bresciani M., Giardino C., Matta E., Villa P., Dekker A. G. (2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 71: 218–233. doi.org/10.1016/j.rse.2015.05.023
- Knaeps E⁻, Ruddick K.G., Doxaran D., Dogliotti A.I., Nechad B., Raymaekers D., Sterckx S. (2015). A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sensing of Environment, 168: 66–79. doi:10.1016/j.rse.2015.06.022
- Manzo C., Bresciani M., Giardino C., Braga F., Bassani C., (2015). Sensitivity analysis of a bio-optical model for Italian lakes focused on Landsat-8, Sentinel-2 and Sentinel-3. European Journal of Remote Sensing, 48: 17-32. doi:10.5721/EuJRS20154802
- Palmer S.C.J., Kutser T. and Hunter P.D. (2015). Remote sensing of inland waters: challenges, progress and future directions. Remote Sensing of Environment, Special Issue: Remote Sensing of Inland Waters, 157: 1–8. doi:10.1016/j.rse.2014.09.021

Papers


- Pinardi M., Fenocchi A., Giardino C., Sibilla S., Bartoli M., Bresciani M. (2015). Assessing Potential Algal Blooms in a Shallow Fluvial Lake by Combining Hydrodynamic Modelling and Remote-Sensed Images. Water, 7 (5): 1921-1942. doi:10.3390/w7051921
- Sterckx S., Knaeps E., Adriaensen S., Reusen I., De Keukelaere L., Hunter P., Giardino C., & Odermatt D. (2015). Opera: An Atmospheric correction for land and water. Published in the proceedings of the Sentinel-3 for Science Workshop held in Venice-Lido, Italy, 2-5 June 2015, ESA Special Publication SP-734.
- » Vaičiūtė D., Bresciani M., Bartoli M., Giardino C., Bučas M. (2015). Spatial and temporal distribution of coloured dissolved organic matter in a hypertrophic freshwater lagoon. Journal of Limnology, 74(3): 572-583. doi:10.4081/jlimnol.2015.1176
- >> Van der Zande D. & Blaas M. & Nechad B. (2015). Sensitivity Analysis of Semi-Analytical Models of Diffuse Attenuation of Downwelling Irradiance in Lake Balaton. Published in the proceedings of the Sentinel-3 for Science Workshop held in Venice-Lido, Italy, 2-5 June 2015, ESA Special Publication SP-734.
- » Villa P., Bresciani M., Bolpagni R., Pinardi M., Giardino C, (2015). A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices. Remote sensing of environment, 171: 218–233. doi:10.1016/j.rse.2015.10.020

ZENODO OPEN ACCESS papers

>> ZENODO repository: https://zenodo.org/collection/user-fp7inform

ACOLITE (RBINS)

Currently at version '20160601'

- Binary distribution of Landsat-8/Sentinel-2 AC processor for Windows, Linux and MAC
- Simple and fast processing of L8/S2 images

for marine and inland water applications

- AC is image based, no need for external Inputs!!
- ε constant over scene (crop), aerosol multiple scattering reflectance varies per pixel

🔄 ACOLITE (v	version 20160	601.2)		x				
		Input and o	output					
			Select input					
			Select output					
	Re	egion crop (deci	imal degrees)					
South	North	West	East					
			Clear					
		RGB proce	essing					
🔽 RGB - Top 🤇	Of Atmosphere	🔽 RGB - Ra	ayleigh corrected					
		L2 proces	ssing					
Generate NetC	CDF file(s): 4) a	single NetCDF	⁴ file with gzip compression	•				
Generate P	NG file(s)	Generate Geo	TIFF file(s)					
Output paramet	ers: rhow_vnir,	rhoam_nir						
Save or restore settings: Save Restore								
Advanced settings About								
Run								
Exit								
			(c) 2014-2016 F	RBINS				

ACOLITE (RBINS)

Standard Features

- Atmospheric correction of Landsat-8 and Sentinel-2
- RGB image generation (TOA, RCO, pan sharpened), RGB scaling
- extraction of rectangular regions

 \rightarrow products:

L2 processing

Rhow	CHL_OC2, CHL_OC3	SPM_NECHAD 561, 655, 865
RTOA, LTOA	DEM	T_NECHAD_64 5
RRC, LRC	FAI (floating algae index)	T_DOGLIOTTI (red, NIR, mix)
RHOAM	NDVI, NDVI_TOA, NDVI_RCO	QAA_a QAA_bb QAA_Kd

ACOLITE (RBINS)

<u>Availability</u>

Direct Download

https://odnature.naturalsciences.be/remsem/software-and-data/index

(or just google 'ACOLITE' \rightarrow first hit)

OPERA-Atmospheric Correction Processor

Macrophyte waters

Rivers and estuaries

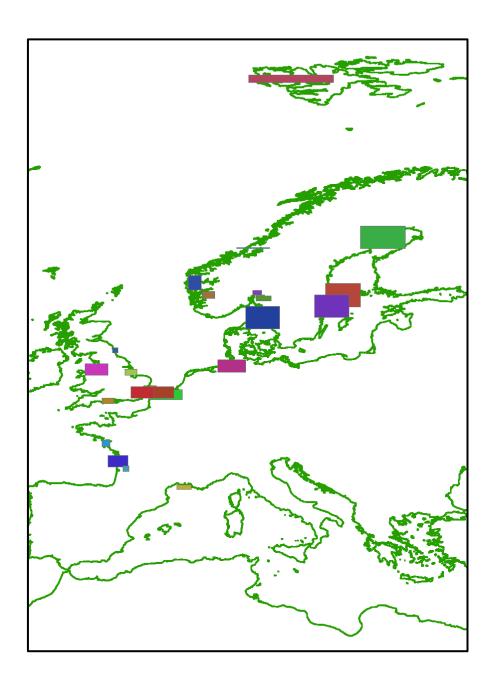
High altitude lakes

Coastal waters

Land

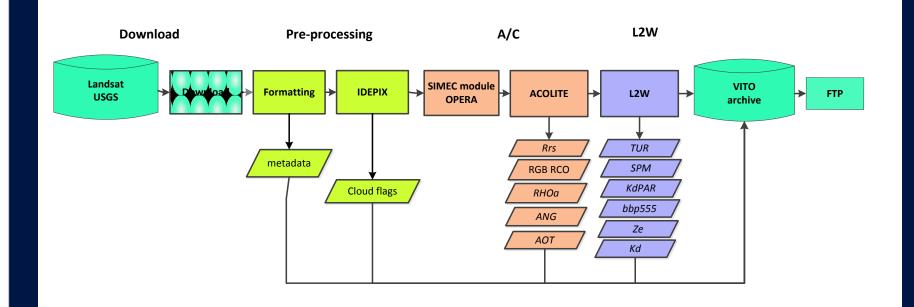
OPERA Workflow

Planned: OPERA Integration in Sentinel-2 Toolbox



Highroc

http://www.highroc.eu



Highroc_sites

Site

Belgian North Sea RBINS Belgian North Sea VITO French coastal Waters Gironde estuary (France) French coastal Waters Gironde upstream French coastal Waters Loire River plume and Bourgn French coastal Waters Rhone river plume (France) French coastal waters Gironde upstream German Coastal waters - Gustav Dalen German Coastal waters - Skattegat German coastal waters - Northern Stockholm archipelago German coastal waters - Elbe river estuary Norwegian waters: Inner Oslofjord region Norwegian waters:Bergen region Norwegian waters: Erfjord region Norwegian waters:Hvaler region Norwegian waters: Isfjorden and Van Mijenfjorden Norwegian waters:Outer Oslofjord region Norwegian waters: Trondheimsfjorden region Southern coastline Singapore UK Waters offshore windfarm sites 1 UK Waters offshore windfarm sites 2 UK Waters offshore windfarm sites 3 UK Waters offshore windfarm sites 4 UK Waters offshore windfarm sites 5 UK waters: north east Irish Sea including Morecamb UK waters: south coast of England WFD regions

Highroc L8 work flow

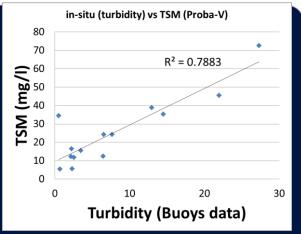
Highroc parameters L8

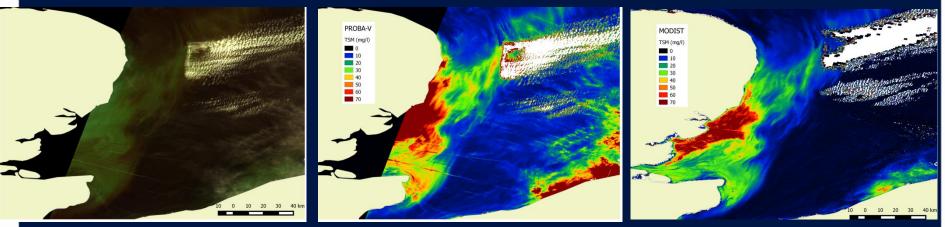
Parameter (units)	Symbol	Туре
Remote sensing reflectance spectrum (sr ⁻¹) at water level	Rrs	L2R
Aerosol reflectance spectrum	RHOa	L2R (aux)
Aerosol reflectance Angstrom exponent	ANG	L2R (aux)
Aerosol optical thickness	AOT	L2R (aux)
Suspended Particulate Matter (g m ⁻³)	SPM	L2W/S
Turbidity (FNU)	TUR	L2W/S
Particulate backscatter at 555nm (m ⁻¹)	bbp555	L2W/S (aux)
Diffuse attenuation coefficient spectrum (m ⁻¹)	Kd	L2W/K
Diffuse attenuation coefficient of PAR (m ⁻¹)	KdPAR	L2W/K
Euphotic depth (m)	Ze	L2W/K
RGB Image (Rayleigh corrected)	RGB	L1

Highroc parameters S2

Parameter (units)	<u>Symbol</u>	<u>Type</u>
Remote sensing reflectance spectrum (sr ⁻¹) at water level	Rrs	L2R
Aerosol reflectance spectrum	RHOa	L2R (aux)
Aerosol reflectance Angstrom exponent	ANG	L2R (aux)
Aerosol optical thickness	AOT	L2R (aux)
Suspended Particulate Matter (g m ⁻³)	SPM	L2W/S
Turbidity (FNU)	TUR	L2W/S
Particulate backscatter at 555nm (m ⁻¹)	bbp555	L2W/S (aux)
Chlorophyll a (mg m ⁻³)	CHL	L2W/C
Algal pigment absorption coefficient at 443nm (m ⁻¹)	apig443	L2W/C (aux)
Diffuse attenuation coefficient spectrum (m ⁻¹)	Kd	L2W/K
Diffuse attenuation coefficient of PAR (m ⁻¹)	KdPAR	L2W/K
Euphotic depth (m)	Ze	L2W/K
CDOM absorption coefficient at 443nm (m ⁻¹)	aCDOM443	L2W
Secchi Depth (m)	SD	L2W
RGB Image (Rayleigh corrected)	RGB	L1

Proba4Coast and PV-LAC

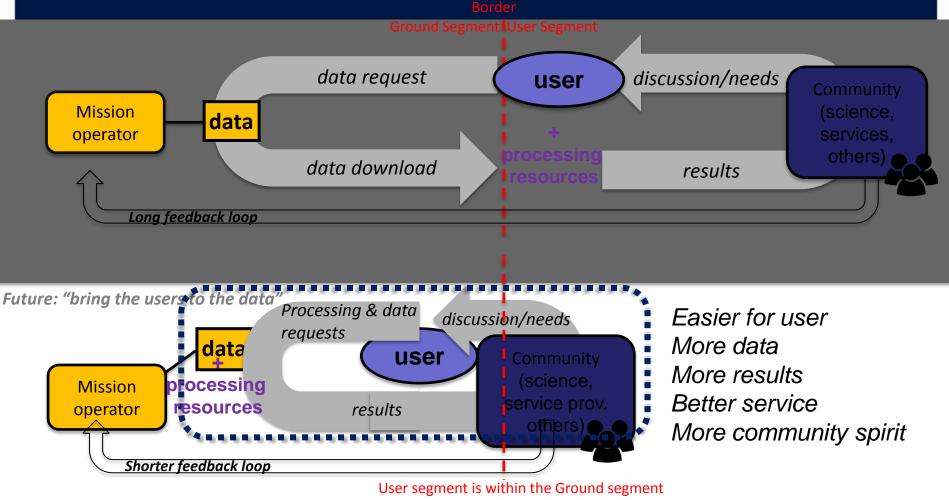

ProbaV for total suspended matter mapping in coastal areas <u>http://proba-v.vgt.vito.be/</u>



First results

Direct Validation through comparison with in-sit Turbidy data from Buoys

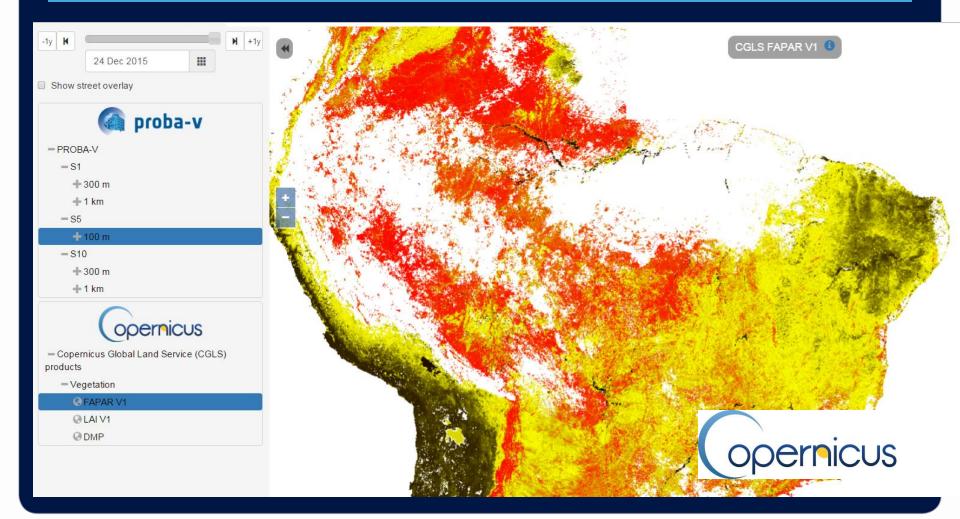
Indirect validation (Left) PROBA-V true color image (acquisition date/time 21 April 2015 /11:06) ; (middle) PROBA-V TSM product ; (right) MODIS-Terra TSM map (acquisition date/time 21 April 2015 /10:50) Nechad et al. (2010) and wavelength switching


ESA MEP PROBA-V

https://proba-v-mep.esa.int/

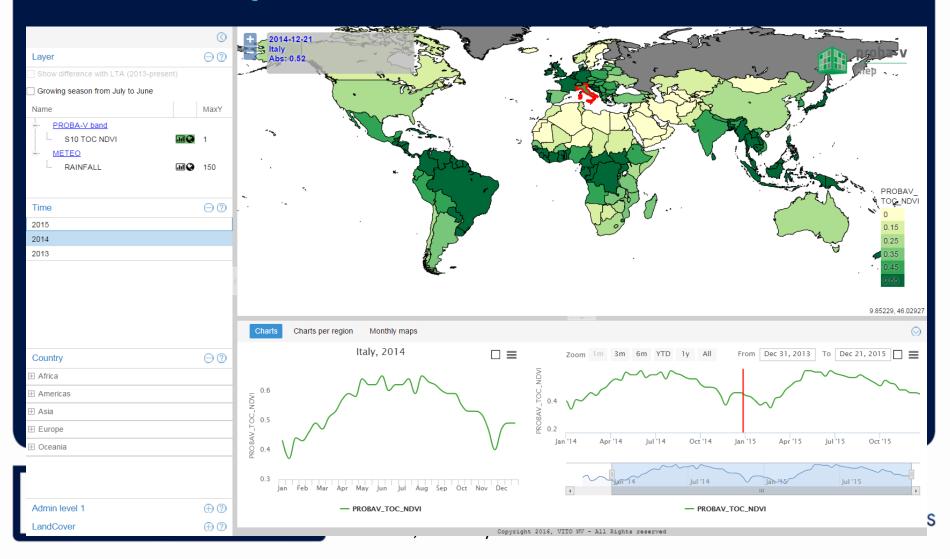
"bring the users to the data"

Current: "bring the data to users"


PROBA-V MEP APPLICATIONS

Support diverse user community

- Time Series Viewer Interactive visualization of long timeseries
- On demand timeseries Analyze your own ROI
- GeoViewer Full resolution viewing of satellite imagery
- N-daily Compositor Create composites on-demand
- Ipython notebooks Write your own experiments on full dataset in the browser
- Toolbox Virtual Machine Flexible R&D environment with direct data access
- More to come!


All backed by distributed processing environment (Hadoop) to provide flexible and scalable processing solution.

GEO VIEWER ROADMAP

TIME SERIES VIEWER

Quickly explore & review satellite time series and complementary indicators for environmental monitoring

N-DAILY COMPOSITOR

First example of pre-defined on-demand processing service

AN	N-Daily Compositor	814
	Launch job Your jobs	
	From:	
1 . F.	Subject: Products of order "D0149770" are available	
	Dear user	
	You receive this e-mail regarding your order:	J.
1.23	Owner: erwing	2.1
West	Order name: D0149770	
	Order description: Order created by POD request	
「たいいうえん	The available products have an estimated size of 13 MB.	
	The following products are available for download :	
S CASC	 product PoDNDailyComposite is now available for download at ftp://erwing@ftp.vito- 	10
	eodata.be/D0149770/ODP_PoDNDailyComposite_0000335-151208120427637-oozie-oozi-W/ until the 18/01/2016 14:31	
	You can use the login and password from the PDF portal to download the products.	
	Please use a client FTP program like FileZilla if the download url does not work (browser depending), using <u>ftp.vito-eodata.be</u> as your login and password from the PDF portal.	FTP-server and
Stall.	Process PROBA-V N-daily compositor	SKILD

Process PROBA-V N-daily composito Start of processing 08/01/2016 14h28 End of processing 08/01/2016 14h30 Status SUCCEEDED

Relaunch job

IPYTHON NOTEBOOK

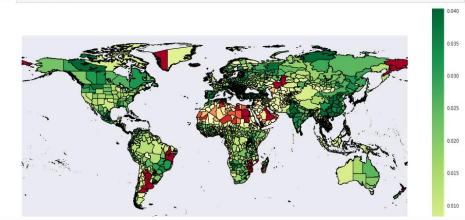
Interactive Data Analysis & Rich Media Output

WEB-BASED INTERACTIVE COMPUTING

A notebook records & distributes 'reproducible' research

Roadmap

- Available for demonstrations (on-demand)
- Released in 2017 to all users


midpoint = 1 - vmax/(vmax + abs(vmin)) colormap = shiftedColorMap(plt.get_cmap(RdYIGn), midpoint=midpoint, name='shifted) pc = PatchCollection(patches, cmap=colormap, linewidths=1, zorder=2)

pc.set_array(np.array(colors)) pc.set_clim([vmin, vmax]) axadd_collection(pc) plt.colorbar(pc)

plt.show()

This is what it looks like worldwide.

In [20]: plot_map(trend_by_zone)

GEO Aqua June 8-10 Koblenz, G

HELP THE EC SHAPE THE FUTURE OF COPERNICUS!

User Requirements Gathering for the Next Generation Copernicus Space Segment cross-sectoral online survey: <u>http://www.copernicus.eu/nextspae-cross-</u> <u>user-needs-survey</u>

