

Joint IGWCO and AquaWatch Community of Practice Meetings

Koblenz, Germany June 8, 2016

GEO Water Quality Summit Goal

Define specific requirements of the water quality system components and develop a plan to implement an integrated end-to-end water quality monitoring and forecasting service

Global Water Quality Products and Services

- AquaWatch aims to develop international operational water quality information systems based on Earth observation with a focus on the developing world.
- The Community of Practice has chosen to focus on transforming data to information based on user needs within this water quality theme.

User needs

Data

Products

Information

Knowledge

Lakes Mendota & Monona -University of Wisconsin SSEC image

AquaWatch Structure

AquaWatch Structure

AquaWatch Structure

User needs	Data	Products	Information Knowledge		
Working Group 1	Working Group 2	Working Group 3	Working Group 4	Working Group 5	
Outreach & User Engagement	Observations & Data	Products & Information	Distribution, Access & Visualization	Education & Capacity Building	

Working Groups

- Working group 1 Outreach & user engagement
 - 4 members
 - Facilitators: Carsten Brockmann & Emily Smail
- Working group 2 Observations & data
 - 24 members
 - Facilitators: Maycira Costa & Philipp Saile
- Working group 3 Products & information
 - 34 members
 - Facilitators: Blake Schaffer & Ghada El Serafy
- Working group 4 Data, access & visualization
 - 13 members
 - Facilitator: Steve Groom
- Working group 5 Education & capacity building
 - 9 members
 - Andrew Tyler and Bilgis Hoque

0-1 year

Work Package 1: Initiation of GEO Water Quality CoP

Work Packages

0-2 years

Work Package 2:

Ongoing and developing water quality project inventory

1-3 years

Work Package 3:

Development of baseline global water quality products

1-3 years

Work Package 4:

Local/regional end-to-end prototype project demonstration

3-5 years

Work Package 5:

Develop initial demonstration global water quality monitoring service

5 - 10 years

Work Package 6:

Transition to routine and sustained global water quality monitoring service

5 - 10 years

Work Package 7:

Expand water quality monitoring service to include forecasting service

Increasing Resources required

AquaWatch The GEO Water Quality Community of Practice

Work Package 2

GE	Water Quality Communit	y of Practice				WQ Inventor	y_v1		,	r Edit Workbook ▼	Print & Share •	Data → •••
	A	В	С	D	Е	F	G	Н	I	J	K	L
1	Project Name	Organization	Project Summary	Funding Entity; Other	Point of Contact	Region/s of Interest	Status	Obs/measurements collected & generated	Platforms/Sensors/Eq uipment used (Field, Remote, Lab)	Algorithm/Validation/ Sampling Protocols	Frequency of Observations	Applications/Man s/Users Support
2			Several states have adopted WHO thresholds for human health exposure to microcyssius (a class of EONEMP is a three year project (2015-2018) funded by the South African Water	Water Research	schaeffer.blake@epa.g ov Jeremy Werdell (NASA):	estuaries South Africa	R&D mode to move towards operational status R&D project, pre- operational	in situ radiometry vs. in situ metrics for cyanobacteria; (2)	field/lab: cyanobacteria counts, abundance, or phycocyanin pigment concentration, latitude, looinde, denth date Envisat Medium Resolution Imaging Spectrometer, Sentinel- 3 Ocean and Land	adopt second derivative spectral shape algorithms Maximum Peak Height (MPH) algorithm;	basis Weekly/Daily	Create a standard a uniform approach f early identification algal blooms that is useful and accessif National Authoritie Decision Makers, t general public
4	Programme) eoWaterQualilty	EOMAP	Research Commission eoWaterQuality services are commercially provided.	projects and investments, with long- term developments co- funded through DED/	Thomas Heege (EOMAP) heege@eomap.de	Globally	Operational	total suspended matter, visibility (SDD), total absorption (ABS), sum	Satellite sensors: Landsat 5/7/8, Sentinel- 2a/b 20m resolution, MODIS A/T, Sent. 3, MERIS (2000 - 2012):	Physics-based Modular Inversion and Processing System (MIP) Processors	Up to daily on request: 5m - 1m	Directive and environmental monitoring for wate environmental ager (e.g. BAW and Lul
5	database	Royal Netherlands Institute for Sea Research	Long-term RS- monitoring project, since August 2001, for automated determination of		Marcel Wernand (Royal Netherlands Institute for Sea Research): marcel wernand@pioz	The Wadden Sea	Operational	Since August 2001 these optical devices provide continuous data every 15 minutes (available for		validation; they have developed a chlorophyll a algorithm based on Brs florescence peak		Other scientists
6	WISER (Water bodies in Europe; Integrative System to assess Ecological status and Recovery)	25 European research institutions	quality monitoring data (total phosphorus, water colour, temperature and	under the 7th Framework Programme, Theme 6 (Environment including	For Project: Prof. Daniel Hering, University Duisberg Essen, Daniel Hering@uni-	•	Operational monitoring used in R&D Project	field samples	Existing data and field data.	existing field monitoring data from more than 20 European countries. Field-	Monthly – often just summer months, for one or more years	Supported implementation of t European Water Framework Directi for many European
7	(Managing aquatic ecosystems and water resources under multiple stress)	institutions and organizations representing 17	project that supports European policies, such as the Water Framework Directive	Framework Programme, Contract No. 603378	Daniel Hering, University Duisberg Essen, Daniel Hering@uni-	• ` ` ′	Operational monitoring & R&D Project data	measurements		series (at least monthly data for 10 years) and	summer months, for one or more years	Supports implementation of t European Water Framework Directi for many European
8	(Environmental Marine Information System)	-	The Marine Geoportal EMIS relies on biological and physical variables generated from both	-	nicolas.hoepffner@jrc. ec.europa.eu	European Seas	Operational	from both hydrodynamic models	PATHFINDER, VIIRS Hydrodynamic model: GETM	using regularly updated NASA SeaDAS software with standard		EMIS includes navigation and statistical tools for assessment of the user's identified ma
9	GIMS (Global Marine Information System)	•	The Marine Geoportal GMIS relies on biological and physical variables generated from satellite remote	•	nicolas.hoepffner@jrc. ec.europa.eu	Global Ocean	Operational	GMIS relies on biological and physical variables generated from satellite remote sensing. A number of	PATHFINDER, VIIRS	Data retrieved from NASA GSFC and re- sampled at GMIS grid	Monthly time-series over sensor's duration	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GLOS - IOOS regional partner	The mission of GLOS is to connect providers			The Great Lakes and Sr. Lawrence River	N/A	GLOS does not directly own or operate	varied	An overview of the QA/QC processes	varied	Resource manager and policy-makers

Work Package 3: Development of baseline global water quality products

- The goal of work package 3 is to develop preliminary, visible demonstration products of water quality parameters. Parameters selected for work package 3 projects should be those that have advanced science, available resources and resonate with the end user community. Parameters should also be appropriate for analysis of inland and coastal waters. The spatial and temporal scales for the projects will be discussed and concurred upon based on expert input from Community of Practice members. Ideally, at least one physical and one biogeochemical parameter should be selected for work package 3. Potential parameters include:
 - Optically active constituents such as chlorophyll, cyanobacteria pigments, Total Suspended Solids & Coloured Dissolved Organic Matter
 - Vertical attenuation of downwelling light (kd)
 - Sechhi disk depth
 - Transparency and Turbidity
 - Water surface Temperature

Work Package 4: Local/regional end-to-end prototype project demonstration

- The goal of work package 4 is to develop local or regional prototype projects that demonstrate the potential of water quality monitoring projects utilizing both remote sensing and in situ data. Work package 4 should include at least 2 prototype projects that address a combination of inland and coastal water bodies in developed and developing countries. Projects can build upon existing work or development of new tools depending on funding availability and interest.
- Prototype projects will aim to link current activities and existing efforts to develop end-to-end products. The projects should focus on utilizing currently produced data to meet user needs. Prototype projects should ultimately demonstrate the use of water quality data and information in management and decision making.

2016 Goals

- 1. Identify Implementation Board (leads and co-leads of Working Groups)
- 2. Identify initial members of the Steering and Advisory Committee
- Complete work package 2 and distribute to Community of Practice (living document)
- 4. Identify specific tasks for working groups for work packages 3 and 4
- 5. Select projects for work packages 3 and 4
- 6. Identify project leaders for work packages 3 and 4
- 7. Identify sub tasks required to complete work packages 3 and 4
- 8. Acquire funding and/or in kind support for work packages 3 and 4
- 9. Begin work on work packages 3 and 4

Questions?

GEO Work Programme Symposium – May 2016

Review of the 2016-2025 GEO Strategic Plan

Role of the Secretariat & Foundational Tasks

Recommendations on the 2017-2019 work programme content

2016-2025 Strategic Plan – key points

- GEO as a broker of Earth Observation data
- GEO as a facilitator of policy-level dialogue
- GEOSS Implementation
 - Empower countries and organizations to strengthen contributions to GEOSS
 - Link GEOSS to socio-economic data through partnerships (e.g. UN Statistics Division)

GEO & Policy

Encouraging linkages to UN Sustainable Development Goals and international mandates and conventions

Ensure availability and sustainable management of water and sanitation for all

Conserve and sustainably use the oceans, seas and marine resources for sustainable development

Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

Role of the Secretariat & Foundational Tasks

GEOSS Development and GEOSS
 Common Infrastructure (GCI) Operations

Community Developments

Secretariat Operations

AquaWatch The GeoWater Quality Community of Practice

GEOSS and GCI Development (GD-01 through GD-11)

GEOSS Information System

Community Developments

CD-01- GEO Cab portal: http://www.geocab.org/

GeoCaB
Earth Observation Capacity Building Portal

- CD-02: Reinforcing engagement at national and regional level
- CD-03: Assess the benefits of Eos and their socio-economic value

Secretariat Operations

- SO-01: Management and Support
- SO-02: Communications and Engagement
 - New GEO website under development & increased focus on social media
- SO-03: Monitoring and Evaluation
- SO-04: Resources Mobilization

Recommendations for the 2017-2019 work programe

 Encouraging linkages with policy and Sustainable Development Goals

Relationships with statistical agencies

Organization within societal benefit areas

Related GEO Community Activities

- CA-07: Integrated Water-cycle
 Products and Services
- CA-08: Water Vapor and Clouds
- CA-09: Precipitation
- CA-10: Evapotranspiration
- CA-12: River Discharge
- CA-13: Ground Water
- CA-14: GEO Water Quality
- CA-15: Water Cycle Capacity Building
- CA-17: GEO Great Lakes Activity
- CA-18: Water Cycle Integrator (WCI)
- CA-19: E2E Water Indicators

- CA-20: EartH2Observe
- CA-21: Total Water Prediction:
 Observations Infrastructure
- CA-22: Linking water tasks with wider societal benefit areas and the post-2015 global development framework
- CA-30: Harmful Algal Bloom (HAB) Early Warning System
- CA-31: For Global Mangrove Monitoring

Related GEO Initiatives

- GI-02: GEOBON Global Biodiversity Observation
- GI-06: AfriGEOSS
- GI-07: Blue Planet Initiative
- GI-18: Earth Observations in Service of the 2030 Agenda for Sustainable Development
- GI-19: AmeriGEOSS
- GI-20: GEO Global Water Sustainability (GEOGLOWS)
- GI-22: Asia-Oceana GEOSS
- GEO Wetlands

Questions?